Multiwavelet-based grid adaptation with discontinuous Galerkin schemes for shallow water equations

نویسندگان

  • Nils Gerhard
  • Daniel Caviedes-Voullième
  • Siegfried Müller
  • Georges Kesserwani
چکیده

We provide an adaptive strategy for solving shallow water equations with dynamic grid adaptation including a sparse representation of the bottom topography. A challenge in computing approximate solutions to the shallow water equations including wetting and drying is to achieve the positivity of the water height and the well-balancing of the approximate solution. A key property of our adaptive strategy is that it guarantees that these properties are preserved during the refinement and coarsening steps in the adaptation process. The underlying idea of our adaptive strategy is to perform a multiresolution analysis using multiwavelets on a hierarchy of nested grids. This provides difference information between successive refinement levels that may become negligibly small in regions where the solution is locally smooth. Applying hard thresholding the data are highly compressed and local grid adaptation is triggered by the remaining significant coefficients. Furthermore we use the multiresolution analysis of the underlying data as an additional indicator whether the limiter has to be applied on a cell or not. By this the number of cells where the limiter is applied is reduced without spoiling the accuracy of the solution. By means of well-known 1D and 2D benchmark problems, we verify that multiwavelet-based grid adaptation can significantly reduce the computational cost by sparsening the computational grids, while retaining accuracy and keeping well-balancing and positivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Acceleration Methods for Advection on the Cubed Sphere

Climate simulation will not grow to the ultrascale without new algorithms to overcome the scalability barriers blocking existing implementations. Until recently, climate simulations concentrated on the question of whether the climate is changing. The emphasis is now shifting to impact assessments, mitigation and adaptation strategies, and regional details. Such studies will require significant ...

متن کامل

Well-balanced r-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations

In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on r-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed m...

متن کامل

Discontinuous Galerkin Method for 1D Shallow Water Flow with Water Surface Slope Limiter

A water surface slope limiting scheme is tested and compared with the water depth slope limiter for the solution of one dimensional shallow water equations with bottom slope source term. Numerical schemes based on the total variation diminishing RungeKutta discontinuous Galerkin finite element method with slope limiter schemes based on water surface slope and water depth are used to solve one-d...

متن کامل

Parallelisation of a Discontinuous Galerkin Solver for the Shallow Water Equation

This master’s thesis is concerned with the sequential and parallel implementations of a Discontinuous-Galerkin Solver for the shallow water equations in a newly developed framework using stacks. One of the other main aspects of the thesis is to keep a strong focus on memory efficiency using Sierpinski space-filling curves, which avoid redundant memory to keep the neighborhood information of the...

متن کامل

Simulation of shallow-water jets with a unified element-based continuous/discontinuous Galerkin model with grid flexibility on the sphere

We test the behavior of a unified continuous/discontinuous Galerkin (CG/DG) shallow water model in spherical geometry with curved elements on three different grids of ubiquitous use in atmospheric modeling: (A) the cubed-sphere, (B) the reduced latitude-longitude, and (C) the icosahedral grid. Both conforming and non-conforming grids are adopted including static and dynamically adaptive grids f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 301  شماره 

صفحات  -

تاریخ انتشار 2015